
Arch: The Permissionless Financial Rails for a
Bitcoin-denominated World

Abstract. Arch enhances Bitcoin’s capabilities by enabling fast, secure, and fully-verifiable
smart contracts without requiring users to bridge their assets. It does so without a soft fork,
instead leveraging a novel infrastructure stack that combines a decentralized validator network,
a UTXO-aware execution environment based on the extended Berkeley Packet Filter (eBPF)
virtual machine, and cryptographic multisig using FROST+ROAST signature schemes. Unlike
L2s and meta-protocols where users must bridge their assets before interacting with smart
contracts, Arch allows users to send their assets directly to smart contracts using native UTXO-
based Bitcoin transactions. This design offers more security and utility than L2s that fracture
liquidity and add bridging risks. It also allows for greater interoperability, unlocking the Bitcoin
economy by connecting emerging decentralized BTC-native apps, from DeFi and gaming to
prediction markets and social networks.

1 The Bitcoin Builder’s Dilemma

Since its whitepaper debut in 2008, Bitcoin has emerged as the canonical gold standard in the digital
assets sector yet has failed to capture the "code is law" developer market due to its heavy scripting
limitations and overall lack of expressivity. Centralized solutions have proven to be nothing more
than a flash in the pan and have oftentimes resulted in extreme financial loss due to hacks and
mismanagement.

More secure protocol extensions such as Omni Layer, Colored Coins, and RGB had brief moments
of adoption yet failed to scale and forced users away from their habitual Bitcoin access point–their
wallet. The emergence of metaprotocols like Ordinals and Runes have emerged as the best standard
to tokenize assets on Bitcoin, yet continue to struggle due to Bitcoin’s slow block times and lack of
expressivity.

Developers know that the next trillion dollar opportunity is unlocking DeFi and capital formation
on pristine Bitcoin but have had no way to access that market. Those seeking programmability are
forced to wrap or bridge BTC assets onto more expressive blockchains like Solana or Ethereum,
fracturing liquidity and introducing centralized custody risks in the process.

This is the "Bitcoin Builder’s Dilemma" that Arch was built to solve.

1.1 Limited Scripting and Expressivity Bitcoin’s Script language was intentionally designed
with severe limitations to prioritize security and determinism. While this approach served Bitcoin’s
primary function as hard money, it came at the cost of expressivity. Developers face a restrictive
environment where even basic programming constructs like loops are unavailable, making it nearly
impossible to implement complex financial applications directly on Bitcoin (e.g. AMMs, pool-based
lending, etc.).

1.2 Poor UX and Fractured Liquidity Bitcoin’s user experience challenges present significant
hurdles for developers building interactive applications. The network’s fundamental design, with 10-
minute block times, creates inherent latency issues that make responsive applications difficult to
achieve. When users expect near-instant feedback, waiting minutes or hours for transaction confirma-
tions creates friction that drives them away. Alternative scaling solutions attempt to address these
limitations but introduce their own complexities—requiring users to bridge assets to completely differ-
ent ecosystems with separate wallets, security models, and interfaces. Even these solutions typically
offer only incremental improvements with multi-second finality times, rather than the sub-second
responsiveness users have come to expect from modern applications. This fragmentation of liquid-
ity and attention across disconnected environments ultimately limits the growth potential of any
Bitcoin-based application ecosystem.

https://bitcoin.org/bitcoin.pdf
https://archive.nytimes.com/dealbook.nytimes.com/2014/02/28/mt-gox-files-for-bankruptcy/
https://www.afslaw.com/services/metaverse-blockchain-digital-assets/crypto-blockchain-bankruptcy/celsius-bankruptcy
https://www.omnilayer.org/
https://www.fool.com/terms/c/colored-coins/
https://www.rgbfaq.com/
https://docs.ordinals.com/
https://docs.ordinals.com/runes.html

2

2 Why L2s and Metaprotocols Aren’t Enough

Bitcoin Layer 2 solutions try to address the issues of Bitcoin by building their own execution layers,
which users must bridge their assets onto. This process allows for scalable programmability, often
showcasing much faster block times and larger block sizes. However, bridging their assets transfers
trust away from the Bitcoin base layer — by far the most liquid, secure, and decentralized blockchain
— to these L2s.

This isn’t appealing to many Bitcoiners, who have already had the ability to access programma-
bility by bridging to Ethereum for years yet have largely chosen not to do so. The total value locked
of "wrapped" BTC assets in DeFi — Bitcoin that is bridged onto Ethereum — is about $10 billion
as of writing, less than 1% of the total Bitcoin market cap.

A few emerging meta-protocols have also tried to add new capabilities to Bitcoin by increasing off-
chain compute capacity. However, they can only handle state changes. They can’t do asset transfers,
which require the ability to sign transactions programmatically and in a decentralized, secure fashion
on the Bitcoin base layer.

In short, they have the same performance limitations of the Bitcoin L1 without the utility of
Bitcoin L2s. Plus, most also require that users bridge their assets.

Assets that are bridged onto L2s and meta-protocols are siloed. They are unable to communicate
with each other or the base layer. This means they lack the necessary interoperability components
for multi-party contracts and cross-program invocation as seen on other decentralized networks.

This fragmentation lowers addressable liquidity, as different chains and meta-protocols cannot
easily inter-operate on Bitcoin, making it harder to aggregate the types of deep liquidity sources
needed to operate more mature DeFi applications.

To build decentralized utility and programmability, Bitcoin needs a truly bridge-free execution
platform that is Turing-complete, meaning it is capable of executing both state changes and asset
transfers directly on the base layer.

It must be able to power the complex, interoperable smart contract functionalities needed to
support decentralized apps without fracturing liquidity or compromising security. And, critically, it
must do so in a trust-minimized way that doesn’t force Bitcoiners to trust their assets with bridges
or insufficiently secure protocols.

3 The Arch Unlock

Arch expands what’s possible in the Bitcoin ecosystem by providing a user and developer experience
previously unattainable on Bitcoin. As the programmability layer that Bitcoin has been missing,
Arch preserves the monetary integrity of pristine BTC while enabling an open, fast, and expressive
economy.

3.1 Seamless Bitcoin Wallet Integration Unlike other solutions that force users away from their
Bitcoin wallet, Arch Network’s novel Taproot address compatibility account model allows users to
access Arch apps directly from their existing Bitcoin wallets:

Native compatibility: Use familiar Bitcoin wallets like Xverse, Unisat, MagicEden, and Ledger
to interact with Arch applications.

No bridging required: Access Arch functionality without transferring assets to external chains
or secondary wallets that introduce additional trust assumptions.

Unified asset management: Manage all Bitcoin assets (BTC, Ordinals, Runes) in a single
wallet interface.

Interoperability: Move seamlessly between Bitcoin applications and Arch-enhanced apps.
This deep integration with the Bitcoin wallet ecosystem eliminates the fragmentation of liquidity

and attention that has plagued previous Bitcoin extension attempts. Arch enables a unified experience
by preserving the security model users trust while expanding what they can do with their Bitcoin
assets.

3.2 Flexible Trust Models for Developers Arch’s unique approach gives developers unprece-
dented flexibility in how they balance Bitcoin’s security with modern application performance re-
quirements:

Arch: The Permissionless Financial Rails for a Bitcoin-denominated World 3

Customizable security models: Choose the optimal point on the trust spectrum for each
application or transaction type, breaking free from Bitcoin’s security vs. innovation dilemma.

Direct Bitcoin settlement: Process transactions directly on Bitcoin’s L1 for maximum security
when needed using Arch’s high threshold signature scheme.

Pre-confirmation acceleration: Utilize Arch’s pre-confirmation system to achieve sub-second
responsiveness, overcoming Bitcoin’s inherent 10-minute block times.

Solana-like UX: Deliver the smooth, instantaneous experiences users expect from modern ap-
plications without sacrificing Bitcoin’s security guarantees.

This flexibility allows developers to build applications that are both responsive and secure, without
sacrificing either quality. Through Arch’s UTXO-aware execution environment based on the eBPF
virtual machine with custom syscalls, developers can finally implement complex financial applications
interoperably with Bitcoin.

3.3 Supercharged Bitcoin Assets While metaprotocols like Runes and BRC-20 have emerged as
significant standards to tokenize assets on Bitcoin, they continue to struggle due to Bitcoin’s slow
block times and lack of expressivity. Arch has built infrastructure to optimize and make Bitcoin assets
more frictionless and fungible.

UTXO optimization: Specialized accounts model designed specifically for the complexities of
UTXO asset organization.

State sharding: Using sharding techniques to enhance throughput for state-dependent transac-
tions.

Real-time mempool indexing: Index Bitcoin, Ordinals, and Runes transactions in the mempool
at significantly higher volumes than previously possible.

Reliable block inclusion: Leveraging robust fee estimation, state chaining, and non-standard
Bitcoin transactions, we provide developers with high probability block inclusion

Improved liquidity mechanisms: Allow efficient trading pools and marketplaces for Bitcoin-
native assets, unlocking DeFi and capital formation on pristine Bitcoin

Powered by Arch’s decentralized validator network that facilitates the seamless coordination of
Bitcoin-native transactions via stake-weighted dPoS consensus, Arch transforms how Bitcoin assets
function. This enables them to scale effectively while maintaining the decentralized properties that
make them valuable.

4 Architecture Overview

Arch combines the power of Bitcoin with the speed and execution of Solana. The network is composed
of a validator set running a dPoS consensus on top of our novel ArchVM combined with a cutting
edge cryptographic multisig — one that uses FROST and ROAST threshold signature schemes that
settle directly on Bitcoin.

4.1 Consensus Arch’s consensus is powered by Arch’s native token using a dPoS model for block
production and threshold key distribution. The state and activity of the network are propagated across
nodes through the GossipSub protocol, ensuring that all validators receive updates in a decentralized
and fault-tolerant manner. Leveraging FROST + ROAST, Arch comes to consensus on new user-
submitted Bitcoin UTXOs and settles them directly on Bitcoin with our cryptographic multi-sig
architecture.

Block Production The block production process in our dPoS consensus begins with leader selec-
tion, which operates on a predetermined schedule for each epoch or fixed time period. Leaders are
strategically selected based on their stake weight in the network, creating a deterministic schedule
that is transparent and known to all participating validators. To maintain system reliability, multiple
backup leaders are designated for each slot, providing essential fault tolerance should the primary
leader fail to produce a block within the allocated time frame.

When a validator assumes the leadership role, they immediately begin the transaction collection
and verification phase. During this critical stage, the leader gathers all pending transactions from the
mempool—the network’s temporary storage for unconfirmed transactions. Each transaction undergoes
rigorous verification, with the leader checking signature validity and ensuring all transactions adhere

https://github.com/libp2p/specs/tree/master/pubsub/gossipsub

4

to the protocol’s rules. Once verified, transactions are ordered based on first in, first out, enabling
fair inclusion in the upcoming block.

The final stage involves block formation, where the leader assembles a comprehensive block struc-
ture that serves as an immutable record in the blockchain. This structure contains several essential
components: a reference to the previous block to maintain chain continuity, a precise timestamp
documenting when the block was created, and a list of transaction IDs that were included in the
block.

Consensus Process When validators receive a new block, they engage in a comprehensive vali-
dation process to ensure network integrity. First, they verify that the block producer is indeed the
designated leader according to the predetermined schedule, preventing unauthorized block creation.
Next, validators meticulously validate all transaction signatures within the block to confirm their
authenticity and prevent forgery. They then execute each transaction and verify the resulting UTXO
states, ensuring that all state transitions follow protocol rules and maintain data consistency across
the network. Finally, validators perform thorough checks for any consensus rule violations, examining
block structure, timestamp validity, transaction ordering, and other protocol-specific requirements
before accepting the block as valid and adding it to their local chain.

4.2 Understanding FROST FROST (Flexible Round-Optimized Schnorr Threshold) is an ad-
vanced threshold signature scheme that enables multiple parties to collectively generate a single valid
Schnorr signature while minimizing communication rounds. Its key innovation is achieving single-
round signing under ideal conditions. FROST maintains the threshold property where only a specified
subset of participants (t out of n) need to cooperate to produce a valid signature, allowing flexibil-
ity when some participants are offline. While prioritizing efficiency over robustness (all participating
signers must be honest), FROST incorporates security mechanisms to detect and mitigate forgery
attempts by malicious participants. The scheme supports both two-round and optimized single-round
signing protocols to accommodate various operational requirements, making it suitable for applica-
tions ranging from cryptocurrency transaction signing to secure multi-party consensus in distributed
networks.

Read more about FROST.

4.3 Understanding ROAST ROAST (Robust Asynchronous Schnorr Threshold signatures) is an
enhancement protocol designed to transform semi-interactive threshold signature schemes into robust
and asynchronous signing protocols. It addresses critical limitations in existing Schnorr threshold
signature schemes that often fail in real-world applications due to assumptions about synchronous
network conditions and lack of robustness against disruptive participants. ROAST achieves robustness
by orchestrating multiple concurrent instances of the underlying signing protocol with different subsets
of signers, ensuring that even if some sessions fail due to malicious behavior or network issues, a valid
signature can still be generated when a threshold of honest signers participate. Key requirements for
ROAST implementation include support for identifiable aborts, resistance to forgery under concurrent
signing sessions, and a semi-interactive structure with one preprocessing and one signing round. By
including mechanisms to identify and exclude disruptive signers without restarting the entire process,
ROAST significantly advances the practical deployment of threshold signatures in distributed systems.

Read more about ROAST.

5 Execution

The Arch Network connects the security and immutability of Bitcoin with the programmability and
flexibility of modern layer-2 networks. At the heart of this innovation is the ArchVM, a specialized
virtual machine designed to execute complex smart contract logic while maintaining Bitcoin state
consistency.

The following sections explore the architecture of the ArchVM, its execution model, and the
unique mechanisms that enable it to maintain state integrity across both Arch Network and the
Bitcoin blockchain.

https://eprint.iacr.org/2020/852.pdf
https://eprint.iacr.org/2022/550.pdf?ref=glossary.blockstream.com

Arch: The Permissionless Financial Rails for a Bitcoin-denominated World 5

5.1 ArchVM and Runtime The ArchVM uses a fork of Solana’s eBPF (extended Berkeley Packet
Filter) virtual machine, providing a secure and performant environment for executing smart contract
programs. While using familiar terminology to Solana, ArchVM is uniquely able to interact directly
with Bitcoin’s UTXO model.

Foundation: Rust-Based eBPF Virtual Machine Like Solana’s implementation, the ArchVM
executes programs compiled to eBPF format, uses the Solana BPF compiler (SBF compiler) to trans-
form Rust code into ELF binary, and provides a restricted instruction set designed for safe execution.

This foundation ensures that developers familiar with Solana’s programming model can easily
build on Arch while benefiting from its Bitcoin integration capabilities.

Key Components The ArchVM architecture consists of several critical components working to-
gether:

1. Program Registry: Maintains the catalog of deployed programs on Arch Network and manages
their lifecycle.

2. Instruction Processor: Executes individual instructions within transactions according to the
eBPF instruction set.

3. Memory Management: Controls program memory access, provides sandboxing, and enforces
memory safety constraints.

4. Syscall Interface: Provides a gateway to system-level functionality, including both standard and
Bitcoin-specific operations.

5. Compute Meter: Tracks and limits computational resources to prevent excessive resource con-
sumption

6. DAG Transaction Processor: Organizes transactions in a directed acyclic graph to track
dependencies and execution order.

5.2 Extended Syscalls The most significant innovation in the ArchVM is the addition of Bitcoin-
specific syscalls that allow smart contracts to interact with the Bitcoin blockchain:

– UTXO Transaction Processing: Syscalls to create, sign, and verify Bitcoin UTXO transactions
– Bitcoin Script Execution: Ability to verify and create Bitcoin scripts
– Direct Bitcoin State Access: Read Bitcoin blockchain state and UTXO information
– Transaction Posting: Submit transactions directly to the Bitcoin network

These syscalls serve as the bridge between the programmable environment of Arch and the fun-
damental UTXO model of Bitcoin.

5.3 Cryptographic Multisig Arch introduces a programmable multisig with a dynamic validator
set that allows signers to enter and exit the network in a decentralized way based on stake weight
and performance.

By combining FROST + ROAST with a Proof-of-Stake economic security model, Arch enables:

– Validator sets that are dynamic and can change over time
– Permissionless participation in securing the network by staking ARCH
– Multisig control that becomes progressively more decentralized and censorship-resistant

5.4 DAG-Based Transaction Dependency Graph Unlike traditional blockchain systems with
linear transaction processing, Arch Network employs a transaction specific Directed Acyclic Graph
(DAG) structure. This approach enables more efficient parallelization, precise dependency tracking,
and sophisticated state management when interacting with Bitcoin.

The transaction graph consists of individual nodes (transactions) in the Arch network and edges
(the dependencies between transactions, representation transactions that operate on the same Arch
accounts).

Each transaction in the graph is represented by a structure that maintains which transactions were
processed first (called "previous transactions") and which are dependent on the current transaction
(called "Next transactions").

6

The graph also tracks the current node state, confirming whether a transaction is anchored on
Bitcoin or state-only — that is, Arch only, with no Bitcoin anchoring — and also if the transaction
has been rolled back or not.

This graph structure allows the system to maintain a complete picture of transaction relationships,
which is crucial for handling complex potential state inconsistencies.

When a transaction fails, the system can precisely identify which other transactions are affected,
allowing Arch to rollback only affected transactions.

5.5 Rollback/Reapply Mechanism When Bitcoin state changes affect Arch transactions:

1. The DAG is traversed to identify affected transactions
2. Affected branches of the DAG are rolled back
3. Transactions incompatible with the new Bitcoin state are failed
4. Previously failed transactions that are now compatible are reapplied
5. The DAG is reconstructed with the updated state

5.6 Enabling Bitcoin Pre-Confirmations The DAG-based Transaction Dependency Graph and
Rollback/Reapply Mechanism enable Arch to implement pre-confirmations to overcome Bitcoin’s
inherent slowness without compromising security.

Consensus and Finality
Once consensus is reached on a block, all transactions in the DAG that are part of that block are

preconfirmed on Arch

1. Selected transactions are anchored to Bitcoin according to their requirements
2. The indexer monitors Bitcoin for confirmations and reorganizations
3. The rollback/reapply mechanism maintains state consistency if Bitcoin state changes

Instead of waiting for full Bitcoin block confirmations —which create poor user experiences and
limit DeFi liquidity flow — Arch provides "soft-confirmations" that allow applications to proceed
immediately as if transactions will be included in the next Bitcoin block.

By chaining state transitions together, Arch guarantees state consistency between Bitcoin and
Arch. The rollback mechanism can reverse state transitions on Arch if a transaction gets evicted from
the mempool or experiences a reorg on Bitcoin.

Crucially, Arch can perform these rollbacks with single-transaction granularity, meaning only
affected transactions need reversal rather than the entire network, maintaining system stability while
enabling much faster transaction processing.

6 Transaction Lifecycle

Users submit program transaction requests through an RPC interface, providing the associated Bit-
coin state anchors, input data, and transaction fees (paid in BTC). Each node of the Decentralized
Verifier Network distributes the request within the network, runs the program request, signs off on the
result, and shares the signed result with the elected leader node. As soon as a threshold of signatures
has been collected, the leader node submits the resulting Bitcoin transaction.

6.1 Program Execution Process The execution of an Arch program follows these steps:

1. Program Deployment:
– The program’s eBPF code is verified against the ISA constraints
– The program is stored in an executable account

2. Transaction Preparation:
– Transaction instructions targeting the program are analyzed
– Dependencies are identified and placed in the DAG

3. Execution Context Initialization:
– Parameter serialization (program ID, account info, instruction data)
– Stack and heap allocation

Arch: The Permissionless Financial Rails for a Bitcoin-denominated World 7

– Memory mapping configuration
– Syscall context setup

4. Program Execution:
– The eBPF program is executed using JIT compilation or interpretation
– Bitcoin-specific syscalls are processed when encountered
– Compute units are tracked to prevent infinite loops or DoS attacks

5. Post-Execution Bitcoin Validation:
– Titan indexer validates Bitcoin transactions referenced by the program
– State is updated based on Bitcoin blockchain confirmation

6. Reorg Handling:
– If Bitcoin reorgs or fee replacements are detected, affected transactions are identified
– The DAG is traversed to find dependent transactions
– Impacted transactions are rolled back or reapplied as needed

7 Conclusion

Arch is building the permissionless financial rails for a Bitcoin-denominated world. By solving the
Bitcoin Builder’s Dilemma without a soft fork, Arch unlocks a user & developer experience that
previously wasn’t possible on Bitcoin. With its novel infrastructure stack that combines a decentralized
validator network, a UTXO-aware execution environment, and cryptographic multisig, Arch preserves
the monetary integrity of pristine BTC while enabling an open, fast, and expressive economy around
it. This creates new opportunities for innovation and adoption in the Bitcoin ecosystem, from DeFi
and GameFi to Art and Metaprotocols.

	Arch: The Permissionless Financial Rails for a Bitcoin-denominated World

